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Abstract: The Dziok-Srivastava [6] operator introduced in the study of analytic
functions and associated with generalized hypergeometric functions has been ex-
tended to harmonic mappings [2, 12]. Using this operator we introduce a subclass
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1 Introduction

Harmonic mappings have found applications in many diverse fields such as en-
gineering, aerodynamics and other branches of applied mathematics. Harmonic
mappings in a domain D ⊆ C are univalent complex-valued harmonic functions
f = u + iv where both u and v are real harmonic. The important work of Clunie
and Sheil-Small [5] on the class consisting of complex-valued harmonic orientation-
preserving univalent functions f defined on the open unit disk U formed the basis
for several investigations on different subclasses of harmonic univalent functions
(See for example [1] and references therein).

In any simply-connected domain D it is known that [5] we can write f = h+g,

where h and g are analytic in D. We call h the analytic part and g the co-analytic
part of f. A necessary and sufficient condition for f to be locally univalent and
orientation preserving in D is that |h′(z)| > |g′(z)| in D (see [5]).

Denote by H the family of harmonic functions

f = h + g (1)

which are univalent and orientation preserving in the open unit disc U = {z : |z| <
1} and f is normalized by f(0) = h(0) = fz(0)− 1 = 0. Thus, for f = h+ g ∈ H,

the analytic functions h and g are given by

h(z) = z +
∞∑

m=2

amzm, g(z) =
∞∑

m=1

bmzm.

Hence

f(z) = z +
∞∑

m=2

amzm +
∞∑

m=1

bmzm, |b1| < 1. (2)

We note that the family H reduces to the well known class S of normalized
univalent functions if the co-analytic part of f is identically zero, that is g ≡ 0.

For complex numbers α1, . . . , αp and β1, . . . , βq (βj 6= 0,−1, . . . ; j = 1, 2, . . . , q)
the generalized hypergeometric function [13] pFq(z) is defined by

pFq(z) ≡ pFq(α1, . . . αp;β1, . . . , βq; z) :=
∞∑

m=0

(α1)m . . . (αp)m

(β1)m . . . (βq)m

zm

m!
, (3)

(p ≤ q + 1; p, q ∈ N0 := N ∪ {0}; z ∈ U)
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where N denotes the set of all positive integers and (a)m is the Pochhammer
symbol defined by

(a)m =

{
1, m = 0
a(a + 1)(a + 2) . . . (a + m− 1), m ∈ N.

(4)

Dziok and Srivastava [6] introduced an operator in their study of analytic func-
tions associated with generalized hypergeometric functions. This Dziok-Srivastava
operator is known to include many well-known operators as special cases.

Let
H(α1, . . . αp; β1, . . . , βq) : A → A

be a linear operator defined by

[(H(α1, . . . αp;β1, . . . , βq))(φ)](z) := z pFq(α1, α2, . . . αp; β1, β2 . . . , βq; z) ∗ φ(z)

= z +
∞∑

m=2

Γm am zm, (5)

where

Γm =
(α1)m−1 . . . (αp)m−1

(β1)m−1 . . . (βq)m−1

1
(m− 1)!

(6)

and α1, · · · , αp; β1, · · · , βq are positive real numbers,such that p ≤ q + 1; p, q ∈
N ∪ {0} , and (a)m is the familiar Pochhammer symbol.

The linear operator H(α1, . . . αp; β1, . . . , βq) or Hp
q [α1, β1] in short, is the

Dziok-Srivastava operator (see [6] and [17]), which includes several well known
operators.

The Dziok-Srivastava operator when extended to the harmonic function f =
h + g is defined by

Hp
q [α1, β1]f(z) = Hp

q [α1, β1]h(z) + Hp
q [α1, β1]g(z) (7)

Motivated by earlier works of [4, 7, 8, 9, 10, 11, 14, 16, 18] on harmonic func-
tions, we introduce here a new subclass GH([α1, β1], γ) of H using the Dziok-
Srivastava operator extended to harmonic functions.

Let GH([α1, β1], γ) denote the subfamily of starlike harmonic functions f ∈ H
of the form (1) such that

Re





1 + (1 + eiψ)

[
z2(Hp

q [α1, β1]h(z))′′

+ 2z(Hp
q [α1, β1]g(z))′ + z2(Hp

q [α1, β1]g(z))′′

]

z(Hp
q [α1, β1]h(z))′ − z(Hp

q [α1, β1]g(z))′





≥ γ (8)
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where Hp
q [α1, β1]f(z) is defined by (7) 0 ≤ γ < 1, z ∈ U and ψ real.

We also let TH([α1, β1], γ) = GH([α1, β1], γ)
⋂

TH where TH [16], is the class
of harmonic functions f such that

f(z) = z −
∞∑

m=2

|am|zm −
∞∑

m=1

|bm|zm, |b1| < 1. (9)

We obtain a sufficient coefficient condition for functions f given by (2) to
be in the class GH([α1, β1], γ) and show that this coefficient condition also is
necessary for functions belonging to the class TH([α1, β1], γ). Also, extreme points
for functions in TH([α1, β1], γ) and certain inclusion results are obtained.

2 Coefficient Condition for the Class GH([α1, β1], γ)

A sufficient coefficient condition for functions belonging to the class GH([α1, β1], γ)
is now derived.

Theorem 2.1. Let f = h + g be given by (2). If

∞∑
m=1

m

(
2m− 1− γ

1− γ
|am|+ 2m + 1 + γ

1− γ
|bm|

)
Γm ≤ 2. (10)

0 ≤ γ < 1, then f ∈ GH([α1, β1], γ).

Proof. When the condition (10) holds for the coefficients of f = h+ g, it is shown
that the inequality (8) is satisfied. Write the left side of inequality (8) as

Re





z(Hp
q [α1, β1]h(z))′ + (1 + eiψ)z2(Hp

q [α1, β1]h(z))′′

+ (1 + 2eiψ)z(Hp
q [α1, β1]g(z))′ + (1 + eiψ)z2(Hp

q [α1, β1]g(z))′′

z(Hp
q [α1, β1]h(z))′ − z(Hp

q [α1, β1]g(z))′





= Re
A(z)
B(z)

.

Since Re (w) ≥ γ if and only if |1− γ + w| ≥ |1 + γ − w|, it is sufficient to show
that

|A(z) + (1− γ)B(z)| − |A(z)− (1 + γ)B(z)| ≥ 0. (11)
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Substituting for A(z) and B(z) the appropriate expressions in (11), we get

|A(z) + (1− γ)B(z)| − |A(z)− (1 + γ)B(z)|

≥ (2− γ)|z| −
∞∑

m=2

m(2m− γ)Γm|am| |z|m −
∞∑

m=1

m(2m + γ)Γm|bm| | |z|m

−γ|z| −
∞∑

m=2

m(2m− 2− γ)Γm|am| |z|m −
∞∑

m=1

m(2m + 2 + γ)Γm|bm| |z|m.

≥ 2(1− γ)|z|
{

1−
∞∑

m=2

m
2m− 1− γ

1− γ
Γm|am| −

∞∑
m=1

m
2m + 1 + γ

1− γ
Γm|bm|

}

≥ 0

by inequality (10), which implies that f ∈ GH([α1, β1], γ).

Now we obtain the necessary and sufficient condition for the function f = h+g

given by (9) to be in TH.

Theorem 2.2. Let f = h + g be given by (9). Then f ∈ TH([α1, β1], γ) if and
only if

∞∑
m=1

m

{
2m− 1− γ

1− γ
|am|+ 2m + 1 + γ

1− γ
|bm|

}
Γm ≤ 2 (12)

where 0 ≤ γ < 1.

Proof. Since TH([α1, β1], γ) ⊂ GH([α1, β1], γ), we only need to prove the necessary
part of the theorem. Assume that f ∈ TH([α1, β1], γ), then by virtue of (7) to (8),
we obtain

Re





(1− γ) + (1 + eiψ)

[
z2(Hp

q [α1, β1]h(z))′′

+ 2z(Hp
q [α1, β1]g(z))′ + z2(Hp

q [α1, β1]g(z))′′

]

z(Hp
q [α1, β1]h(z))′ − z(Hp

q [α1, β1]g(z))′





≥ 0.
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The above inequality is equivalent to

Re





z −




∞∑
m=2

m[m(1 + eiψ)− γ − eiψ]Γm|am|zm

+

∞∑
m=1

m[m(1 + eiψ) + γ + eiψ]Γm|bm|zm




z −
∞∑

m=2

mΓm|am|zm +
∞∑

m=2

mΓm|bm|zm





= Re





(1− γ)−
∞∑

m=2

m[m(1 + eiψ)− eiψ − γ]Γm|am|zm−1

−z

z

∞∑
m=1

m[m(1 + eiψ) + eiψ + γ]Γm|bm|zm−1

1−
∞∑

m=2

mΓm|am|zm−1 + z
z

∞∑
m=1

mΓm|bm|zm−1





≥ 0.

This condition must hold for all values of z ∈ U and for real ψ, so that on taking

z = r < 1 and ψ = 0, the above inequality reduces to

(1− γ)−
[ ∞∑

m=2

m(2m− 1− γ)Γm|am|rm−1 +
∞∑

m=1

m(2m + 1 + γ)Γm|bm|rm−1

]

1−
∞∑

m=2

Γm|am|rm−1 +
∞∑

m=1

Γm|bm|rm−1

≥ 0.

(13)

Letting r → 1− through real values, we obtain the condition (12). This completes the

proof of Theorem 2.2.

3 Extreme Points and Inclusion Results

We determine the extreme points of closed convex hulls of TH([α1, β1], γ) denoted
by clcoTH([α1, β1], γ).

Theorem 3.1. A function f(z) ∈ clcoTH([α1, β1], γ) if and only if f(z) =
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∞∑
m=1

(Xmhm(z) + Ymgm(z)) where

h1(z) = z, hm(z) = z − 1− γ

m(2m− 1− γ)Γm
zm; (m ≥ 2),

gm(z) = z − 1− γ

m(2m + 1 + γ)Γm
zm; (m ≥ 2),

∞∑
m=1

(Xm + Ym) = 1, Xm ≥ 0 and Ym ≥ 0.

In particular, the extreme points of TH([α1, β1], γ) are {hm} and {gm}.

Proof. First, we note that for f as in the theorem above, we may write

f(z) =
∞∑

m=1

(Xmhm(z) + Ymgm(z))

=
∞∑

m=1

(Xm + Ym)z −
∞∑

m=2

1− γ

m(2m− 1− γ)Γm
Xmzm

−
∞∑

m=1

1− γ

m(2m + 1 + γ)Γm
Ymzm

= z −
∞∑

m=2

Amzm −
∞∑

m=1

Bmzm

where Am =
1− γ

m(2m− 1− γ))Γm
Xm, and Bm =

1− γ

m(2m + 1 + γ)Γm
Ym.

Therefore

∞∑
m=2

m(2m− 1− γ)Γm

1− γ
Am +

∞∑
m=1

m(2m + 1 + γ)Γm

1− γ
Bm

=
∞∑

m=2

Xm +
∞∑

m=1

Ym

= 1−X1 ≤ 1,

and hence f(z) ∈ clcoTH([α1, β1], γ).
Conversely, suppose that f(z) ∈ clcoTH([α1, β1], γ). Setting

Xm =
m(2m− 1− γ)Γm

1− γ
Am, (m ≥ 2), Ym =

m(2m + 1 + γ)Γm

1− γ
Bm, (m ≥ 1)
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where
∞∑

m=1
(Xm + Ym) = 1. Then

f(z) = z −
∞∑

m=2

Amzm −
∞∑

m=1

Bmzm, Am, Bm ≥ 0.

= z −
∞∑

m=2

1− γ

m(2m− 1− γ)Γm
Xmzm −

∞∑
m=1

1− γ

m(2m + 1 + γ)Γm
Ymzm

= z +
∞∑

m=2

(hm(z)− z)Xm +
∞∑

m=1

(gm(z)− z)Ym

=
∞∑

m=1

(Xmhm(z) + Ymgm(z))

as required.

Now we show that TH([α1, β1], γ) is closed under convex combinations of its
members.

Theorem 3.2. The family TH([α1, β1], γ) is closed under convex combinations.

Proof. For i = 1, 2, . . . , suppose that fi ∈ TH([α1, β1], γ) where

fi(z) = z −
∞∑

m=2

ai,mzm −
∞∑

m=2

bi,mzm.

Then, by inequality (12)
∞∑

m=2

m(2m− 1− γ)Γm

(1− γ)
ai,m +

∞∑
m=1

m(2m + 1 + γ)Γm

(1− γ)
bi,m ≤ 1. (14)

For
∞∑

i=1

ti = 1, 0 ≤ ti ≤ 1, the convex combination of fi may be written as

∞∑

i=1

tifi(z) = z −
∞∑

m=2

( ∞∑

i=1

tiai,m

)
zm −

∞∑
m=1

( ∞∑

i=1

tibi,m

)
zn.

Using the inequality (12), we obtain
∞∑

m=2

m(2m− 1− γ)Γm

(1− γ)

( ∞∑
i=1

tiai,m

)
+

∞∑
m=1

m(2m + 1 + γ)Γm

(1− γ)

( ∞∑
i=1

tibi,m

)

=

∞∑
i=1

ti

( ∞∑
m=2

m(2m− 1− γ)Γm

(1− γ)
ai,m +

∞∑
m=1

m(2m + 1 + γ)Γm

(1− γ)
bi,n

)

≤
∞∑

i=1

ti = 1,
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and therefore
∞∑

i=1

tifi ∈ TH([α1], γ).

Theorem 3.3. For 0 ≤ δ ≤ γ < 1, let f(z) ∈ TH([α1, β1], γ) and F (z) ∈
TH([α1, β1], δ). Then f(z) ∗ F (z) ∈ GH([α1, β1], γ) ⊂ GH([α1, β1], δ).

Proof. Let f(z) = z −
∞∑

m=2
amzm −

∞∑
m=1

bmzn ∈ TH([α1, β1], γ) and F (z) = z −
∞∑

m=2
Amzm−

∞∑
m=1

Bmzn ∈ TH([α1, β1], δ). Then f(z)∗F (z) = z +
∞∑

m=2
amAmzm +

∞∑
m=1

bmBmzn.

We note that |Am| ≤ 1 and |Bm| ≤ 1. Now we have

∞∑
m=2

m(2m− 1− δ)Γm

1− δ
|am| |Am|+

∞∑
m=1

m(2m + 1 + δ)Γm

1− δ
|bm| |Bm|

≤
∞∑

m=2

m(2m− 1− δ)Γm

1− δ
|am|+

∞∑
m=1

m(2m + 1 + δ))Γm

1− δ
|bm|

≤
∞∑

m=2

m(2m− 1− γ))Γm

1− γ
|am|+

∞∑
m=1

m(2m + 1 + γ))Γm

1− γ
|bm| ≤ 1,

using Theorem 2.2 since f(z) ∈ TH([α1, β1], γ) and 0 ≤ δ ≤ γ < 1. This proves
that f(z) ∗ F (z) ∈ TH([α1, β1], δ).

4 Integral Operator

Now, we examine a closure property of the class TH([α1, β1], γ) under the gener-
alized Bernardi-Libera -Livingston integral operatorLc(f) which is defined by

Lc(f) =
c + 1
zc

z∫

0

tc−1f(t)dt, c > −1.

Theorem 4.1. Let f(z) ∈ TH([α1, β1], γ). Then Lc(f(z)) ∈ TH([α1, β1], γ)

Proof. From the representation of Lc(f(z)), it follows that

Lc(f) =
c + 1
zc

z∫

0

tc−1
[
h(t) + g(t)

]
dt.
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=
c + 1
zc




z∫

0

tc−1

(
t−

∞∑
m=2

amtn

)
dt−

z∫

0

tc−1

( ∞∑
m=1

bmtn

)
dt




= z −
∞∑

m=2

Amzm −
∞∑

n=21

Bmzm

where
Am =

c + 1
c + n

am; Bm =
c + 1
c + n

bm.

Therefore,

∞∑
m=1

m

(
2m− 1− γ

1− γ
(
c + 1
c + n

|am|) +
2m + 1 + γ

1− γ
(
c + 1
c + n

|bm|)
)

Γm

≤
∞∑

m=1

m

(
2m− 1− γ

1− γ
|am|+ 2m + 1 + γ

1− γ
|bm|

)
Γm

≤ 2(1− γ).

Since f(z) ∈ TH([α1, β1], γ), therefore by Theorem 2.2 ,Lc(f(z)) ∈ TH([α1, β1], γ).
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